Your AI agent remembers the last three messages. Great. But what happens when the user comes back tomorrow? Next week? Next month?
Memory isn’t just about token windows—it’s about building systems that retain context across sessions, learn from interactions, and recall relevant information at the right time. This is the difference between a chatbot and an actual assistant.
This guide covers the engineering behind AI agent memory: when to use different storage strategies, how to implement them, and the production patterns that scale.
The Memory Hierarchy
AI agents need multiple layers of memory, just like humans:
1. Working Memory (Current Session)
- What it is: The conversation happening right now
- Storage: In-context tokens, cached in LLM provider
- Lifetime: Current session only
- Retrieval: Automatic (part of prompt)
- Cost: Token usage per request
2. Short-Term Memory (Recent Sessions)
- What it is: Recent interactions from the past few days
- Storage: Fast key-value store (Redis, DynamoDB)
- Lifetime: Days to weeks
- Retrieval: Query by user/session ID
- Cost: Database queries
3. Long-Term Memory (Historical Context)
- What it is: All past interactions, decisions, preferences
- Storage: Vector database (Pinecone, Weaviate, pgvector)
- Lifetime: Permanent (or years)
- Retrieval: Semantic search
- Cost: Vector operations + storage
4. Knowledge Memory (Facts & Training)
- What it is: Domain knowledge, procedures, policies
- Storage: Vector database + structured DB
- Lifetime: Updated periodically
- Retrieval: RAG (Retrieval Augmented Generation)
- Cost: Embedding generation + queries
When Each Memory Type Makes Sense
Working Memory Only: - Simple FAQ bots - Stateless API wrappers - One-shot tasks - Budget-conscious projects
Working + Short-Term: - Customer support bots (remember current issue across multiple sessions) - Project assistants (track active tasks) - Debugging helpers (retain context during troubleshooting)
Working + Short-Term + Long-Term: - Personal assistants (learn user preferences over time) - Enterprise agents (organizational memory) - Learning systems (improve from historical interactions)
Full Stack (All Four): - Production AI assistants - Multi-tenant SaaS platforms - High-value use cases where context = competitive advantage
Implementation Patterns
Pattern 1: Session-Based Memory
The simplest approach: store conversation history in a fast database, retrieve it at the start of each session.
Architecture:
class SessionMemoryAgent:
def __init__(self, redis_client):
self.redis = redis_client
self.session_ttl = 3600 * 24 * 7 # 7 days
async def get_context(self, user_id: str, session_id: str) -> List[Message]:
"""Retrieve recent conversation history"""
key = f"session:{user_id}:{session_id}"
messages = await self.redis.lrange(key, 0, -1)
return [json.loads(m) for m in messages]
async def add_message(self, user_id: str, session_id: str, message: Message):
"""Append message to session history"""
key = f"session:{user_id}:{session_id}"
await self.redis.rpush(key, json.dumps(message.dict()))
await self.redis.expire(key, self.session_ttl)
async def chat(self, user_id: str, session_id: str, user_message: str) -> str:
# Load conversation history
history = await self.get_context(user_id, session_id)
# Build prompt with history
messages = [
{"role": "system", "content": "You are a helpful assistant."}
]
messages.extend([{"role": m.role, "content": m.content} for m in history])
messages.append({"role": "user", "content": user_message})
# Get response
response = await llm.chat(messages)
# Store both messages
await self.add_message(user_id, session_id,
Message(role="user", content=user_message, timestamp=time.time()))
await self.add_message(user_id, session_id,
Message(role="assistant", content=response, timestamp=time.time()))
return responseAdvantages: - Simple to implement - Fast retrieval - Predictable costs
Limitations: - No memory across sessions - No semantic search - Limited to recent context
Pattern 2: Vector-Based Episodic Memory
Store all interactions as embeddings. Retrieve relevant past conversations based on semantic similarity.
Architecture:
class VectorMemoryAgent:
def __init__(self, vector_db, embedding_model):
self.db = vector_db
self.embedder = embedding_model
async def store_interaction(self, user_id: str, interaction: Interaction):
"""Store interaction with embedding"""
# Generate embedding of the interaction
text = f"{interaction.user_message}\n{interaction.assistant_response}"
embedding = await self.embedder.embed(text)
# Store in vector DB
await self.db.upsert(
id=interaction.id,
vector=embedding,
metadata={
"user_id": user_id,
"timestamp": interaction.timestamp,
"user_message": interaction.user_message,
"assistant_response": interaction.assistant_response,
"tags": interaction.tags,
"sentiment": interaction.sentiment
}
)
async def retrieve_relevant_context(
self,
user_id: str,
current_query: str,
limit: int = 5
) -> List[Interaction]:
"""Find semantically similar past interactions"""
# Embed current query
query_embedding = await self.embedder.embed(current_query)
# Search vector DB
results = await self.db.query(
vector=query_embedding,
filter={"user_id": user_id},
top_k=limit,
include_metadata=True
)
return [Interaction(**r.metadata) for r in results]
async def chat(self, user_id: str, message: str) -> str:
# Retrieve relevant past interactions
relevant_context = await self.retrieve_relevant_context(user_id, message)
# Build prompt with retrieved context
context_summary = "\n\n".join([
f"Past conversation (relevance: {ctx.score:.2f}):\nUser: {ctx.user_message}\nAssistant: {ctx.assistant_response}"
for ctx in relevant_context
])
prompt = f"""You are assisting a user. Here are some relevant past interactions:
{context_summary}
Current user message: {message}
Respond to the current message, using past context where relevant."""
response = await llm.generate(prompt)
# Store this interaction
interaction = Interaction(
id=str(uuid.uuid4()),
user_id=user_id,
user_message=message,
assistant_response=response,
timestamp=time.time()
)
await self.store_interaction(user_id, interaction)
return responseAdvantages: - Semantic retrieval (finds relevant context even if words differ) - Works across sessions - Scales to large histories
Limitations: - Embedding costs - Query latency - Requires tuning (top_k, relevance threshold)
Pattern 3: Hybrid Memory System
Combine session storage with vector-based long-term memory. Best of both worlds.
Architecture:
class HybridMemoryAgent:
def __init__(self, redis_client, vector_db, embedding_model):
self.redis = redis_client
self.vector_db = vector_db
self.embedder = embedding_model
self.session_ttl = 3600 * 24 # 1 day
self.session_limit = 20 # Max messages in working memory
async def get_working_memory(self, user_id: str, session_id: str) -> List[Message]:
"""Get recent conversation (working memory)"""
key = f"session:{user_id}:{session_id}"
messages = await self.redis.lrange(key, -self.session_limit, -1)
return [json.loads(m) for m in messages]
async def get_long_term_memory(self, user_id: str, query: str) -> List[Interaction]:
"""Get relevant historical context (long-term memory)"""
query_embedding = await self.embedder.embed(query)
results = await self.vector_db.query(
vector=query_embedding,
filter={"user_id": user_id},
top_k=3,
include_metadata=True
)
return [Interaction(**r.metadata) for r in results if r.score > 0.7]
async def chat(self, user_id: str, session_id: str, message: str) -> str:
# 1. Load working memory (recent conversation)
working_memory = await self.get_working_memory(user_id, session_id)
# 2. Load long-term memory (relevant past context)
long_term_memory = await self.get_long_term_memory(user_id, message)
# 3. Build layered prompt
prompt_parts = ["You are a helpful assistant."]
if long_term_memory:
context = "\n".join([
f"- {ctx.user_message[:100]}... (response: {ctx.assistant_response[:100]}...)"
for ctx in long_term_memory
])
prompt_parts.append(f"\nRelevant past interactions:\n{context}")
# 4. Construct messages
messages = [{"role": "system", "content": "\n\n".join(prompt_parts)}]
messages.extend([{"role": m.role, "content": m.content} for m in working_memory])
messages.append({"role": "user", "content": message})
# 5. Generate response
response = await llm.chat(messages)
# 6. Store in both memory systems
await self.store_working_memory(user_id, session_id, message, response)
await self.store_long_term_memory(user_id, message, response)
return response
async def store_working_memory(self, user_id: str, session_id: str,
user_msg: str, assistant_msg: str):
"""Store in Redis (short-term)"""
key = f"session:{user_id}:{session_id}"
await self.redis.rpush(key, json.dumps({
"role": "user",
"content": user_msg,
"timestamp": time.time()
}))
await self.redis.rpush(key, json.dumps({
"role": "assistant",
"content": assistant_msg,
"timestamp": time.time()
}))
await self.redis.expire(key, self.session_ttl)
async def store_long_term_memory(self, user_id: str,
user_msg: str, assistant_msg: str):
"""Store in vector DB (long-term)"""
interaction_text = f"User: {user_msg}\nAssistant: {assistant_msg}"
embedding = await self.embedder.embed(interaction_text)
await self.vector_db.upsert(
id=str(uuid.uuid4()),
vector=embedding,
metadata={
"user_id": user_id,
"user_message": user_msg,
"assistant_response": assistant_msg,
"timestamp": time.time()
}
)Advantages: - Fast recent context (Redis) - Deep historical context (vector DB) - Balances cost and capability
Challenges: - More complex to implement - Two systems to maintain - Deciding what goes where
Production Considerations
Memory Compression
Long conversations exceed token limits. Compress older messages.
class CompressingMemoryAgent:
async def compress_history(self, messages: List[Message]) -> List[Message]:
"""Compress old messages to fit token budget"""
if len(messages) <= 10:
return messages
# Keep recent messages verbatim
recent = messages[-5:]
# Summarize older messages
older = messages[:-5]
summary_text = "\n".join([f"{m.role}: {m.content}" for m in older])
summary = await llm.generate(f"""Summarize this conversation history in 2-3 sentences:
{summary_text}
Summary:""")
compressed = [
Message(role="system", content=f"Previous conversation summary: {summary}")
]
compressed.extend(recent)
return compressedPrivacy & Data Retention
Memory means storing user data. Handle it responsibly.
class PrivacyAwareMemoryAgent:
def __init__(self, vector_db):
self.db = vector_db
self.retention_days = 90
async def anonymize_interaction(self, interaction: Interaction) -> Interaction:
"""Remove PII before storing"""
# Use a PII detection service/library
anonymized_user_msg = await pii_detector.redact(interaction.user_message)
anonymized_assistant_msg = await pii_detector.redact(interaction.assistant_response)
return Interaction(
id=interaction.id,
user_id=hash_user_id(interaction.user_id), # Hash instead of plaintext
user_message=anonymized_user_msg,
assistant_response=anonymized_assistant_msg,
timestamp=interaction.timestamp
)
async def delete_old_memories(self, user_id: str):
"""Implement data retention policy"""
cutoff_time = time.time() - (self.retention_days * 24 * 3600)
await self.db.delete(
filter={
"user_id": user_id,
"timestamp": {"$lt": cutoff_time}
}
)
async def delete_user_data(self, user_id: str):
"""GDPR/CCPA compliance: delete all user data"""
await self.db.delete(filter={"user_id": user_id})
await self.redis.delete(f"session:{user_id}:*")Memory Indexing Strategies
How you index matters.
class IndexedMemoryAgent:
async def store_with_rich_metadata(self, interaction: Interaction):
"""Index by multiple dimensions for better retrieval"""
embedding = await self.embedder.embed(interaction.user_message)
# Extract metadata for filtering
tags = await self.extract_tags(interaction.user_message)
sentiment = await self.analyze_sentiment(interaction.user_message)
entities = await self.extract_entities(interaction.user_message)
await self.db.upsert(
id=interaction.id,
vector=embedding,
metadata={
"user_id": interaction.user_id,
"timestamp": interaction.timestamp,
"tags": tags, # ["billing", "technical-issue"]
"sentiment": sentiment, # "negative", "neutral", "positive"
"entities": entities, # {"product": "Pro Plan", "company": "Acme"}
"resolved": interaction.resolved, # bool
"category": interaction.category
}
)
async def retrieve_with_filters(self, user_id: str, query: str,
category: str = None,
resolved: bool = None):
"""Retrieve with semantic search + metadata filters"""
query_embedding = await self.embedder.embed(query)
filters = {"user_id": user_id}
if category:
filters["category"] = category
if resolved is not None:
filters["resolved"] = resolved
results = await self.db.query(
vector=query_embedding,
filter=filters,
top_k=5
)
return resultsMemory Consistency Across Agents
In multi-agent systems, agents need to share memory.
class SharedMemoryCoordinator:
"""Coordinate memory across multiple specialized agents"""
def __init__(self, vector_db, redis_client):
self.vector_db = vector_db
self.redis = redis_client
async def write_to_shared_memory(self, interaction: Interaction,
agent_id: str):
"""Any agent can write to shared memory"""
embedding = await self.embedder.embed(
f"{interaction.user_message} {interaction.assistant_response}"
)
await self.vector_db.upsert(
id=interaction.id,
vector=embedding,
metadata={
**interaction.dict(),
"agent_id": agent_id, # Track which agent handled it
"shared": True
}
)
async def retrieve_shared_context(self, query: str,
exclude_agent: str = None):
"""Retrieve context from all agents, optionally excluding one"""
query_embedding = await self.embedder.embed(query)
filters = {"shared": True}
if exclude_agent:
filters["agent_id"] = {"$ne": exclude_agent}
results = await self.vector_db.query(
vector=query_embedding,
filter=filters,
top_k=5
)
return resultsMonitoring Memory Health
Track memory system performance.
class MemoryMetrics:
def __init__(self):
self.context_relevance = Histogram(
'memory_context_relevance_score',
'Relevance score of retrieved context'
)
self.retrieval_latency = Histogram(
'memory_retrieval_latency_seconds',
'Time to retrieve context'
)
self.storage_size = Gauge(
'memory_storage_size_bytes',
'Total size of stored memories',
['user_id']
)
async def record_retrieval(self, user_id: str, query: str):
start_time = time.time()
results = await self.vector_db.query(
vector=await self.embedder.embed(query),
filter={"user_id": user_id},
top_k=5
)
latency = time.time() - start_time
self.retrieval_latency.observe(latency)
if results:
avg_relevance = sum(r.score for r in results) / len(results)
self.context_relevance.observe(avg_relevance)
return resultsThe Bottom Line
Memory isn’t a feature—it’s a system. The difference between a demo and a production AI agent is how well it remembers, retrieves, and applies context.
Start simple: Session-based memory for most use cases.
Add layers: Vector storage when you need semantic retrieval across time.
Go hybrid: Combine fast short-term storage with deep long-term memory for production systems.
And always remember: stored data = stored responsibility. Handle it accordingly.
The best AI agents don’t just remember everything—they remember the right things at the right time.
